Planar motion with Fresnel integrals as components of the velocity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Fresnel Integrals

This paper describes a method for spreadsheet computations of Fresnel integrals to six significant figures, based on successive improvements of known rational approximations which are accurate to only three figures. Outside the range of validity of the improved approximations, known series expansions are used to obtain the Fresnel integrals to six figures.

متن کامل

Computation of Fresnel Integrals. II

This paper describes an improved method for computing Fresnel integrals with an error of less than 1 × 10(-9). The method is based on a known approximate formula for a different integral which is due to Boersma and referenced by Abramowitz and Stegun.

متن کامل

On the Fresnel Integrals and the Convolution

The Fresnel cosine integral C(x), the Fresnel sine integral S(x), and the associated functions C + (x), C − (x), S + (x), and S − (x) are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel cosine integral and its associated functions with x r + and x r are evaluated. The Fresnel cosine integral C(x) is defined by C(x) = 2 π x 0 cos ...

متن کامل

Computing Fresnel integrals via modified trapezium rules

In this paper we propose methods for computing Fresnel integrals based on truncated trapezium rule approximations to integrals on the real line, these trapezium rules modified to take into account poles of the integrand near the real axis. Our starting point is a method for computation of the error function of complex argument due to Matta and Reichel (J. Math. Phys. 34 (1956), 298–307) and Hun...

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Mexicana de Física

سال: 2020

ISSN: 2683-2224,0035-001X

DOI: 10.31349/revmexfis.66.585